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We discuss in detail the interesting phenomenon of wavelength-doubling bifurcations in the model of
coupled-map lattices reported earlier [Phys. Rev. Lett. 70, 3408 (1993)]. We take nearest-neighbor cou-
pling of logistic maps on a one-dimensional lattice. With the value of the parameter of the logistic map,
u, corresponding to the period-doubling attractor, we see that the wavelength and the temporal period of
the observed pattern undergo successive wavelength- and period-doubling bifurcations with decreasing
coupling strength €. The universality constants a and § appear to be the same as in the case of the
period-doubling route to chaos in the uncoupled logistic map. The phase diagram in the e-u plane is in-
vestigated. For large values of u and large periods, regions of instability are observed near the bifurca-
tion lines. We also investigate the mechanism for the wavelength-doubling bifurcations to occur. We
find that such bifurcations occur when the eigenvalue of the stability matrix corresponding to the eigen-
vector with periodicity of twice the wavelength exceeds unity in magnitude.

PACS number(s): 05.45.+b, 47.20.Ky

I. INTRODUCTION

Modeling of spatially extended dynamical systems by
various means has attracted much attention in the recent
past [1-5]. The extensive studies that have been carried
out in nonlinear dynamical systems have led to a reason-
able understanding of the low-dimensional chaotic sys-
tems. However, our understanding of the spatially ex-
tended dynamical systems with large dimensions is still
not satisfactory. The modeling and characterization of
spatiotemporal systems and spatiotemporal chaos are
very important for the study of many systems, such as
turbulence in fluids [6], reaction-diffusion systems (e.g.,
[7]), etc. One of the heuristic ways in which the under-
standing of low-dimensional nonlinear dynamical systems
can be utilized in understanding spatially extended sys-
tems is to couple such systems on a lattice and study the
coupled system, e.g., the oscillator chains [3], coupled-
map lattices [4], and cellular automata [2]. Several appli-
cations of such coupled systems have been studied. These
systems are simpler to study and easily tractable. In par-
ticular, coupled-map lattices after their introduction by
Kaneko [8] have been studied widely [9-24]. The
coupled-map lattice models show many interesting phe-
nomena, such as kink dynamics, solitons, frozen random
patterns, periodic patterns, traveling-wave solutions, in-
termittency, chaos, etc. [5]. The phenomenon of spa-
tiotemporal intermittency in Rayleigh-Bénard convection
has been modeled by coupled-map lattices [25]. Also,
they have been used in modeling spiral waves in the B-Z
reaction [7] and the phenomenon of crystal growth [24].
Another interesting application is the simulation of the
kinetics of important equations in phase-ordering pro-
cesses such as the Cahn-Hilliard-Cook (CHC) and time-
dependent Ginzburg-Landau (TDGL) equations [20-23].
Several studies in the model of coupled-map lattices with
different kinds of local dynamics, couplings, lattice
dimensionality, etc., have been carried out in the recent
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past [8-13].

There have been many studies of temporal period dou-
blings in coupled-map lattices [8]. A renormalization-
group approach for these period doublings has been
developed by Kuznetsov [15] and recently by Kook,
Ling, and Schmidt [16]. In these papers they have shown
that any small coupling is essentially characterized by
two parameters; one is the inertial coupling associated
with the scaling factor a=—2.50. . . and the other is the
one corresponding to the dissipative coupling with the
scaling factor 2.0.

In this paper we discuss in detail an interesting
phenomenon of spatiotemporal period doubling reported
recently [19] in the model of coupled-map lattices. The
phenomenon is a spatial analog of the well-known route
to chaos via temporal period doubling. In this
phenomenon we observe successive bifurcations in which
the wavelength (spatial period) and the temporal period
keep doubling as the coupling parameter is changed. Our
model system is a one-dimensional coupled-map lattice
with logistic maps coupled symmetrically. This system
has several spatially and temporally periodic stable solu-
tions [17,18]. Starting with a stable solution with a spa-
tial period of 2 we find that the temporal and spatial
periods of the observed patterns undergo successive
period-doubling bifurcations as the coupling strength is
decreased. The patterns that are observed are of the
traveling-wave type. Using the standard procedure, the
universality constants a and 8§ are obtained and they ap-
pear to be the same as in the case of the period-doubling
route to chaos in an uncoupled logistic map [26]. We
also analyze the stability matrix and determine the condi-
tion for spatial period-doubling bifurcations to occur.

The phase diagram in the e-u plane is interesting. Here
€ is the coupling parameter and u is the parameter of the
logistic map. For u<u., where pu, is the parameter
value for the period-doubling attractor, we get the
wavelength-doubling bifurcations as described above.
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For u> pu, the situation is more complicated. For large
periods and large u there are regions of instability near
the bifurcation lines. We study the conditions under
which such regions of instability occur.

II. WAVELENGTH-DOUBLING BIFURCATIONS

Let us consider the following model of a one-

dimensional coupled-map lattice with symmetric
nearest-neighbor couplings,
x,H(z'):(1—e)f(x,(i))+§f(x,(i +1))
+§f(x,(i—1)), (1)

where x,(i) is the variable associated with the ith lattice
point at time ¢ taking values in a suitably bounded phase
space, and i =1, ..., m. The map f is the logistic map,

f(x)=px(1—x); x€[0,1] and nE€[0,4] .

The parameter € represents the coupling strength and
0<e=1.

One can see that for e=0 the dynamics of the lattice is
one of the uncoupled logistic maps. The logistic map un-
dergoes a period-doubling sequence in time leading to the
period-doubling attractor at u=pu _=3.569. .. .

Let S.(N) denote a solution of Eq. (1) with time period
7 and space period N. Consider the solution
S,(2)={x,(1),x,(2)} with x,(1)##x,(2). It is possible to
show that there is a range of parameter values where
S,(2) is a stable solution and is given by

x,(1)
_ (pt+1—2ue)+V(p+1—2pe)(p—3—2ue+4e)
2u(1—2¢) o
xl(z):i&ﬂ:gﬁfl_xl(l) )

w(1—2e)

This solution has time period 2 and x,(1)=x,(2),
x,(2)=x,(1). It may be also treated as a traveling-wave
solution with velocity 1. The stability of this solution can
be determined by the eigenvalues of the stability or the
Jacobian matrix. The stability criterion is discussed in
Sec. I1I.

Let us first consider the case when u=p ., which is the
accumulation point of the period-doubling cascade in an
uncoupled logistic map and the coupling parameter € is
allowed to vary. The phase diagram in the e-u plane
is discussed in Sec. IV. The period-2 solution
§,(2) is stable in the range (€,=0.13418...) to
(€;,=0.038890. . .) [see Egs. (9) and (10)]. These values
are listed in Table I. For € <e; the solution S,(2) be-
comes unstable and undergoes a period-doubling bifurca-
tion. A new solution S,(4) with space period 4 and time
period 4 becomes stable. The solution S,(4) is stable in
the range €, to €,=0.0097649... . At €, we have one
more period-doubling bifurcation leading to the period-8
solution Sg(8) for € <e,. Further numerical investiga-
tions show that the period-doubling cascade continues
and probably leads to the accumulation point at €., =0.0.

TABLE I. The values of €, at successive bifurcation points at
1w=pu., are given for different n. The table also lists values of d,,,
a,,and d,,.

n €, d, a, 5,

1 0.038 8908 0.349 32 —3.0396 3.855
2 0.009 765 —0.11492 —2.5682 4.434
3 0.002 182 0.044 75 —2.4355 4.621
4 0.000472 —0.01837 —2.5216 4.642
5 0.000 102 0.007 28 —2.4884

6 0.0000223 —0.002 92

At each bifurcation point both the space and the time
periods double. Since we have a spatial period-doubling
cascade starting with space period 2, it was necessary to
choose the lattice size in powers of 2 in numerical simula-
tions. The maximum lattice size used was 2048 with cy-
clic boundary condition. The stability of the solutions
was checked by giving small perturbations and also by
checking the eigenvalues of the matrices M (6) [Eq. (5)]
discussed in the next section.
In Table I the €, values at the successive bifurcation
points are listed. Let §, be given by
§,=—n Sntl 3)

€r+1” €n+2

The values of §, are listed in Table I. Though these
values are still inadequate to conclude about the asymp-
tote §=96,, they are clearly consistent with the value
6=4.6692... obtained from the period-doubling se-
quence of an uncoupled logistic map as a function of p
[26].

In Fig. 1 we plot the values of x, (i) for different values
of i, as a function of €. The bifurcation diagram has a
striking similarity to the one in the case of an uncoupled
logistic map as a function of x. To determine the scaling
parameter a,, we determine the value of € for each

1.0

=

o.a§>_/

Xg (i)

0.6
0.4F
0.2 1 1 1 1 1 1

0 0.02 0.046 0.06 0.08 0.10 0.12 0.14

FIG. 1. The variables x,(i) at a given time at different sites
are plotted as a function of e at uy=p,.
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period for which one value of x,(i) is 0.5. This defines
the analog of the superstable orbit for an uncoupled logis-
tic map. Let d, be the separation of the point x,(i)=0.5
from the nearest x value (see Fig. 1) for the period 2".
Define the scaling parameter a, by

d

n

a, =

. 4)
dn +1

The values of d, and a, are listed in Table I. We again
note that the values of , are consistent with the asymp-

the main frequency in the frequency-doubling cascade in
nonorientable manifolds [27].

ITI. LINEAR STABILITY ANALYSIS

We now consider the stability of the periodic solution
S,(N). This problem can be simplified by using the re-
sults of Refs. [17,18]. We first consider a one-
dimensional lattice chain @,, of length M with cyclic
boundary conditions, i.e., the first and the Mth lattice
points are neighbors of each other.

totic value a=a, =2.5029. .. for the uncoupled logistic
map as a function of u [26].

The period-doubling solutions that we observe can also
be treated as traveling-wave solutions. The velocities of
the solutions with periods 2, 4, and 8 that we have ob-
tained are 1, 3, and 5, respectively. For higher-order
periods the observed velocity is 11. We note that the se-
quence of traveling-wave speeds (1,3,5,11) corresponds to
the succession v, =v, +2v, _,;. This is characteristic of

|

Let R,=(x,(1),...,x,(N)) denote the state of the sys-
tem of the chain @y at time ¢t. Let S_(N,1) denote a solu-
tion of Eq. (1) with temporal periodicity 7 for the chain
@N’ i.e.,

SAN,1)={R,R,,...,R,R|,R,,...}.

Now consider a closed chain @,y of length kN,
k=1,2,.... Obviously the spatially periodic sequence

S ANK)={(Ry,...,RVir- SRy ...,R) ARy, .. .,R)p. ..}

of wavelength N built from the states {R,} as the building blocks is a solution of Eq. (1) for the closed chain @,y with
temporal periodicity 7. Here the ordered pair {R,,...,R, ), represents a state made up of k replicas of the state R,.
We call S_(N,k) the k-replica solution of S.(N,1). The stability criterion for the k-replica solution was discussed in
Ref. [17]. It was shown that the problem of eigenvalues of a kN X kN stability matrix of the k replica solution can be
simplified to the analysis of k matrices of size N XN which are constructed using the stability matrix for the solution
S.(N,1), the building block of spatial periodicity. The problem can be further simplified for a traveling-wave solution
[18]. If v is the velocity of the traveling wave then the problem of stability analysis of the k-replica solution reduces to
the analysis of the eigenvalues of the N X N matrices M (0) given by [18]

M(6)=(11y)%, , (5)
where 6=0,27/k, ... ,(k —1)2mw/k. Here Ilgand J, are N X N matrices given by

00 --- 0 e
10 - 0 0

H=(01 - 0 0 6)
00 -~ 1 0

and

(1—e)f"(x (1)) %f’(x,(2)) %f’(x,(N))e""
%f’(xl(l)) (1—e)f"(x,(2)) ... 0

J9= 3 E . (7)
ff'(xl(z))e—"’ 0 (1—€)f"(x(N))

Now the k-replica solution is stable if all the eigenvalues of the matrices M (6) have magnitude less than 1. As k — o
or as the size of the lattice increases, 0 takes continuous values between 0 and 27. It is easy to show that it is sufficient
to check the eigenvalues of M (0) in the range 0<0 =1 to determine the stability of the solution as k — «, i.e., an
infinite lattice. Let

ST(N)=k1im S.(N,k) .

Let us apply the above stability analysis to the period-2 solution S,(2,k) [Eq. (2)], which has velocity 1. For N =2
and v =1, matrices M (0) [Eq. (5)] are given by
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(1—e)f'(x,(1))

%(1+e‘i9)f'(x,(1))

We first consider the stability of the solution for k =1,
i.e., the solution S,(2,1). The stability criterion is that
the eigenvalues of the matrix M (0) have magnitude less
than 1. From the eigenvalues we find that the solution
S,(2,1) is stable in the range €, < € < €', where

172
e=1li—|—3
) wu—2) ’
_ )
o 2 —4u—3—V8u’—16p+9
4p(p—2) '

At the lower limit €', one of the eigenvalues of M (0) be-
comes — 1, while at the upper limit ¢,, both the eigenval-
ues are complex and have unit magnitude. For k =2 we
must consider both 8=0 and m, i.e., the matrices M (0)
and M (). The analysis of the eigenvalues of M (w)
shows that the stability range of € values shrinks with the
upper limit €, remaining unchanged and the lower limit
shifting to €;, which is one of the solutions of the equa-
tion

4(1—e)P—(1—2e —pu(p—2)1—e)(1—2¢)*=0. (10)
|
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§(1+e“9)f'(x1(2))

(8)

(1—e)f'(x,(2))

f

At €, the eigenvalues of M (7) are +1. For k >2 the ei-
genvalues of M (8) with 6 in the range 0—m must be con-
sidered. By obtaining eigenvalues for 6 values for
k =3,4, ..., we find that there is no further reduction in
the stability range (e€,,€;) of € values for the solution
S,(2,k) as k—>ow [17]. We have also numerically
checked the stability of the solution in this range by ran-
dom perturbations of the solution.

Let us consider the point €,, where we have a period-
doubling bifurcation and for € <€, we have a stable solu-
tion S,(4) of period 4. At e=¢, the eigenvalues of the
matrix M () are 1. We will now show that this indi-
cates a tendency towards wavelength doubling. In fact,
in general a solution of spatial periodicity N develops a
tendency to wavelength doubling when the eigenvalues
corresponding to matrix M () become greater than 1 in
magnitude.

To understand how an eigenvalue of M (w) being
greater than 1 in magnitude shows a tendency towards
spatial period doubling, consider the full Nk X Nk matrix
W whose eigenvalues determine the stability of the solu-
tion Sy (Nk,Nk) [18],

(1—€)f"(x,(1)) %f’(x1(2)) 0 %f’(xl(N))
;f’(xl(l)) (1—€)f"(x,(2)) %f’(xl(l)) 0
W=11 0 gf'(xl(zn (1—e)f"(x,(1) ... 0 . (1)
;—f’(x,(l)) 0 0 (1—e)f"(x,(N))

Let us consider the eigenvalue equation for the N XN
matrix M (0) [Eq. (8)],

M (0w, (8)=A;(0)v;(0), (12)

where v;(0), i =1,2, ..., N, are the eigenvectors with ei-
genvalues A;(0). It is easy to verify that the full matrix
W [Eq. (11)] has the same eigenvalues A;(0) with the
eigenvectors V;(0) given by

V(6)=(v;(0),v;(8)e%v,(0)e?0, .. . v(8)e* " VHT

where T represents the transpose. Now let us consider a
small deviation A;={8,(1),6,(2),...,8,(Nk)} from the

initial periodic solution (Ry,...,R )y,
R,=(x,(1),...,x,(N)). We expand this deviation in
terms of the eigenvectors of W
(k—12m/k N
A= 3 Scowi(e),
6=0 i=1

[
where ¢;(0) are the expansion coefficients. After time ¢
the deviation from the periodic solution is given by

(k—102m/k N
A[+1: E E(A,(B))tc,(G)V,(O) .
6=0 i=1

It is clear that the contributions to the deviation by the
eigenvectors with eigenvalues having magnitude greater
than 1 will increase while the remaining contributions
will decrease. Thus if the only eigenvalues greater than 1
are those corresponding to 6=1r, then the contribution to
the deviation from the corresponding eigenvectors V()
will survive. The wavelength of the new solution will
thus correspond to that of V() which is twice the origi-
nal one. We note that we have carried out the above
analysis using linear stability analysis. Thus the above re-
sult only gives a tendency towards wavelength doubling.
The exact final solution cannot be obtained using this
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analysis.

In general, if an eigenvalue of the matrix M (6) exceeds
1 in magnitude then it shows a tendency towards a new
solution of wavelength 27N /0, if 60, and of the same
wavelength N if 6=0. All the wavelength-doubling bifur-
cations that we observed are consistent with the above
analysis. At each bifurcation point one or more of the ei-
genvalues of the matrix M (7) have magnitude 1 and the
eigenvalues of the matrices M (6) with other values of 6
are still less than 1.

Let A denote the eigenvalue with the largest magnitude
of the matrices M(6). We define the Lyapunov exponent
A as

A=In|A| . (13)

In Fig. 2 we plot the value of the Lyapunov exponent as a
function of e. We observe a graph similar to the one in
the case of the period-doubling transition to chaos in an
uncoupled logistic map as a function of u with the
difference that here A remains finite since the largest mag-
nitude eigenvalue is never zero. Starting from zero at a
bifurcation point the Lyapunov exponent decreases as €
decreases, reaches a minimum, and then again rises to
zero at the next bifurcation point.

IV. BEHAVIOR IN THE e-u PLANE

We now consider the bifurcation diagram in the e-u
plane (Fig. 3). First let us consider the case 3.0<pu<pu.,.
For 1 <3.0 the inhomogeneous periodic solutions Sy (N)
that we are discussing do not exist. [See Eq. (9) for ¢,
which expresses the upper limit of stability for the solu-
tion S,(2).] The behavior in this region of the e-u plane is
similar to that observed at u=p ., except that the bifurca-
tions do not continue ad infinitum as € is decreased. For
a given value of u, we start from the solution S,(2),
which is stable in the range €,> ¢ > €, [Egs. (9) and (10)].
As € is decreased, we observe successive period-doubling
bifurcations until we obtain the correct periodicity of the
uncoupled logistic map in the limit €e—0.

0.00
-1.oo|
_MOH
M -3.00

-4.001

-5.00

~6.00: . ) 1
000 0.02 0.04 0.06 0.08 010 0.12 0.4

€

FIG. 2. The Lyapunov exponent A is plotted as a function of
eatpu=p,,.

We now consider the case pu,, <u<4.0. Here the bi-
furcation diagram shows interesting behavior. Bifurca-
tion lines for the transitions from S,(2) to S4(4) and
from S,(4) to Sg(8) continue up to p=4.0 (Fig. 3). How-
ever, the bifurcation line for the transition from Sg(8) to
S16(16) does not continue to u=4.0. The line continues
up to u=3.770. .. and then a small region of instability
is encountered for larger values of u. For any
©>3.770. .. there is a small range of € values for which
neither of the solutions S3(8) and S4(16) is stable and
the behavior appears to be chaotic. This region is not
easy to resolve graphically and a schematic diagram of
this region in the e-u plane is shown in Fig. 4. The range
of stability of the solution S,4(16) extends up to £ =4.0.
The next bifurcation line for the transition S;4(16) to
S3,(32) continues up to £=3.90... to within our nu-
merical accuracy. For larger values of u the solution
S3,(32) is not stable for any €. The bifurcation line for
the transition S3,(32) to Sg(64) continues up to
u=3.57... . For larger values of u there is a region of
instability similar to the one shown in Fig. 4. The upper
boundary of the region of instability meets the bifurca-
tion line for the transition S.4(16) to S;,(32) at
©£=3.90.... The lower boundary meets a similar line
coming from below at p=3.61.... Thus the solution
S¢4(64) is not stable for u>3.61. ...

The linear stability analysis near the unstable regions
described above can be done by calculating the eigenval-
ues of the matrices M(6) [Eq. (5)]. As discussed in the
preceding section, at the wavelength-doubling bifurcation
an eigenvalue of the matrix M () becomes 1 in magni-
tude and the eigenvalues of the matrices with other
values of 0 are smaller in magnitude. On the other hand,
it is found that as we approach the region of instability
(Fig. 4) with decreasing € an eigenvalue of the matrix
M (0) becomes unity in magnitude while the eigenvalues

0.20

0.16

0.081

o.oaﬁ

1
°'°°3.o 3.2

FIG. 3. The phase diagram showing the wavelength-doubling
bifurcation lines in the e-u plane. The numbers represent the
wavelength and the temporal periods of the stable solutions.
Higher periods cannot be resolved on this scale.
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Sg (8)

Sy (16)

M

FIG. 4. A schematic diagram of the bifurcation line for the
transition from Sg(8) to S4(16). The shaded region is the one
in which both the solutions are unstable and the behavior ap-
pears to be chaotic.

of all other matrices including the one for = have
magnitude less than 1.

We have also investigated the region in the e-u plane
near the period-3 window in an uncoupled logistic map.
Wavelength-doubling bifurcations similar to those report-
ed above are seen in this case also.

V. DISCUSSION AND CONCLUSIONS

We have found a phenomenon of wavelength-doubling
bifurcation in coupled-map lattices. This is the spatial

analog of the normal temporal period-doubling route to
chaos. We find that the wavelength and the temporal
period keep doubling as the coupling parameter is de-
creased. We have also obtained the condition for the
wavelength-doubling bifurcations to occur by using the
linear stability analysis. The universality constants ap-
pear to be the same as the ones in the case of the well-
known period-doubling route to chaos. This
wavelength-doubling route to spatiotemporal chaos can
be very important in our understanding of different phe-
nomena seen in spatiotemporal systems. Experiments on
large-aspect-ratio cells in Rayleigh-Bénard convection
with annular geometry may be one of the systems where
the phenomenon described above may be observed [28].

The behavior in the e-u plane is interesting. For
u<u, finite wavelength doublings are observed and the
solutions smoothly go over to those corresponding to un-
coupled logistic maps as €—0. For large periods and
uw>p, we observe regions of instabilities where our
periodic solutions are not stable.

For pu=p,. there appear to be infinite wavelength-
doubling bifurcations as € —0. It is interesting to ask the
following question. Is the point (e=0, u=u ) unique in
the e-u plane? In other words, we would like to know
whether it is possible to have values of u>pu , for which
infinite wavelength-doubling bifurcations can be ob-
tained? Clearly, this question is difficult to answer nu-
merically and would require an analytic treatment.
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